'Building the Internet of Things'

In this excerpt from chapter 10 of 'Building the Internet of Things,' author Maciej Kranz discusses why a common IoT framework is critical to the current and future success of a connected world.

The following is an excerpt from Building the Internet of Things: Implement New Business Models, Disrupt Competitors, Transform Your Industry by author Maciej Kranz and published by Wiley. This section from chapter 10 describes the importance of a common IoT framework.

Are you overwhelmed yet? Fortunately, the industry quickly recognized that we can't go through each building block in a solution and ask basic questions like those above without a decoder ring. Thus, we've started to converge on a common IoT framework. That IoT framework is not just a slick marketing gimmick. It actually represents the way serious IoT players think about issues such as architectures, terminology, and logical blocks. Put another way, it's about using common designs, described in the same terminology, to refer to the same things. This isn't cast in concrete yet; it's only a starting point.

Building the Internet of Things

Such a framework can guide us on how to reduce the complexity of IoT technologies and solutions. It helps us determine which layers to abstract, where to focus on interoperability, and where to create open APIs as well as common and open standards. Since IoT is still evolving and will continue to evolve for years, we want a way to accommodate new innovations while ensuring that any new things can work with existing things. Otherwise, we'd all be in the position of reinventing everything anytime something changes. The IoT World Forum Reference Model is a good example of such an effort. (The IEEE IoT Architectural Framework is another example.) Its common framework drives interoperability across all IoT components: devices and controllers, networks, edge or fog computing, data storage, applications, and analytics. The model (Figure 10.2) organizes these components into layers and provides a graphical representation of IoT and all that it entails.

'Building the Internet of Things'

Written by Maciej Kranz

Published by John Wiley & Sons, Inc.

Get your copy of Building the Internet of Things: Implement New Business Models, Disrupt Competitors, Transform Your Industry

Figure 10.2: The IoT Technology Stack

Equipped with such a reference model, the IoT industry has been focusing on three different standardization thrusts:

  1. Evolving existing horizontal standards. As has been the case with many previous technology transitions, the robust standards of the IT world are now evolving to include requirements from OT and IoT. Dozens of interest groups in the IEEE, IETF, and other standards bodies are working on requirements for IoT, including time-sensitive networking (TSN) for cars or industrial control systems and safety; high-speed mobile communications among diverse things such as cars, trains, and other vehicles; or high-coverage low-speed networking technologies for low-power low-bandwidth sensors.
  2. Migrating specialized, proprietary, and semi-standard technologies to open standards. As we've discussed, major industry players in manufacturing, transportation, and other verticals have historically implemented proprietary technologies or established standards around their own protocols and technologies. This often created conflicting standards, thus inhibiting interoperability and adoption. The IoT industry is working with the major industry standards bodies, including ODVA, to avoid this issue by migrating to open standards while ensuring interoperability with legacy protocols.
  3. Creating consortia to address key pain points. Major industry players are joining forces in new consortia, among them the Industrial Internet Consortium (IIC), the Open Connectivity Foundation (OCF), the OpenFog Consortium (OFC), and the OPC Foundation (for open platform communications).

IoT technologies are organized as a technology stack that moves up from physical devices at the bottom through data and applications, and finally processes. As I've mentioned, data analytics and vertical applications are key drivers for IoT. Most recently, I've seen an increased interest in data-in-motion and real-time/near-real-time data capabilities (think predictive analytics and fast payback scenarios), which are driving the latest interest in fog computing. One big challenge with such data is that the data streams tend to age, which drives down their value very quickly; thus, the need to implement real-time analytics capabilities at the edge. Think about using data to identify and stop fraud as it's occurring. This isn't something you want to do hours, days, weeks, or months later. Besides the growing interest in fog-based analytics, the good news is that the industry is quickly adopting an open-source innovation model for both data storage and data governance, which should also speed data processing.

Read the entire chapter

Download the PDF of chapter 10 to learn more!

Finally, many of the challenges with IoT aren't technology-related but instead come from the industry's slow adoption and, often, resistance to change. One example of why creating common standards is so important: Wireless HART and ISA100, two different wireless standards focused on connecting sensors to the network. Both were derived from the IEEE 802.15.4 protocols, but each was created by a separate ecosystem of industry players and, as a result, is incompatible with the other. When my team came across these standards a few years ago, we thought we could help the industry converge on a common open standard for the wireless connectivity of sensors. That way, customers could easily choose among many sensor vendors and infrastructure vendors and not be locked into buying devices that only support a given standard. We went to both camps and proposed that we work on a plan to converge Wireless HART and ISA100 into one new open standard. Unfortunately, the idea was dead on arrival. I still hope that someday both standards will converge, but I don't see it happening in the near future. It will only happen when customers demand it and vote with their purchase orders.

Excerpted from BUILDING THE INTERNET OF THINGS: Implement New Business Models, Disrupt Competitors, Transform Your Industry by Maciej Kranz. Copyright © 2016, Wiley.

Maciej Kranz

Maciej Kranz, vice president, Strategic Innovations Group, at Cisco brings 30 years of networking industry experience to his position. He leads the group focused on incubating new businesses, accelerating internal innovation, and driving co-innovation with customers and startups through a global network of Cisco Innovation Centers.

Prior to this role, Kranz was general manager of the Connected Industries Group at Cisco, a business unit focused on the Internet of Things. He built a $250M business from the ground up in 18 months and relentlessly evangelized the IoT opportunity across Cisco and the market, making IoT one of Cisco's major priorities.

Previously, Kranz led efforts across Cisco to define, prioritize, and deliver Borderless Network Architecture and roadmaps. He also drove business and product strategy for the wireless and mobility business and led product management for the stackable Ethernet switching business unit through its expansion from $400M to $6B in revenues.

Before coming to Cisco, Kranz held various management positions at 3Com Corporation, where he drove a $1B Ethernet network interface cards (NICs) product line. He began his professional career at IBM Corporation. He lives in Silicon Valley.

Dig Deeper on Internet of Things (IoT) Strategy