Internet of Things (IoT)
The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.
Download Our Guide and Overcome IoT Security Challenges
The IoT is imminent – and so are the security challenges it will inevitably bring. Get up to speed on IoT security basics and learn how to devise your own IoT security strategy in our new e-guide.
A thing, in the Internet of Things, can be a person with a heart monitor implant, a farm animal with a biochip transponder, an automobile that has built-in sensors to alert the driver when tire pressure is low -- or any other natural or man-made object that can be assigned an IP address and provided with the ability to transfer data over a network.
IoT has evolved from the convergence of wireless technologies, micro-electromechanical systems (MEMS), microservices and the internet. The convergence has helped tear down the silo walls between operational technology (OT) and information technology (IT), allowing unstructured machine-generated data to be analyzed for insights that will drive improvements.
Kevin Ashton, cofounder and executive director of the Auto-ID Center at MIT, first mentioned the Internet of Things in a presentation he made to Procter & Gamble in 1999. Here’s how Ashton explains the potential of the Internet of Things:
“Today computers -- and, therefore, the internet -- are almost wholly dependent on human beings for information. Nearly all of the roughly 50 petabytes (a petabyte is 1,024 terabytes) of data available on the internet were first captured and created by human beings by typing, pressing a record button, taking a digital picture or scanning a bar code.
The problem is, people have limited time, attention and accuracy -- all of which means they are not very good at capturing data about things in the real world. If we had computers that knew everything there was to know about things -- using data they gathered without any help from us -- we would be able to track and count everything and greatly reduce waste, loss and cost. We would know when things needed replacing, repairing or recalling and whether they were fresh or past their best.”
IPv6’s huge increase in address space is an important factor in the development of the Internet of Things. According to Steve Leibson, who identifies himself as “occasional docent at the Computer History Museum,” the address space expansion means that we could “assign an IPV6 address to every atom on the surface of the earth, and still have enough addresses left to do another 100+ earths.” In other words, humans could easily assign an IP address to every "thing" on the planet. An increase in the number of smart nodes, as well as the amount of upstream data the nodes generate, is expected to raise new concerns about data privacy, data sovereignty and security.
Practical applications of IoT technology can be found in many industries today, including precision agriculture, building management, healthcare, energy and transportation. Connectivity options for electronics engineers and application developers working on products and systems for the Internet of Things include:
Although the concept wasn't named until 1999, the Internet of Things has been in development for decades. The first internet appliance, for example, was a Coke machine at Carnegie Melon University in the early 1980s. The programmers could connect to the machine over the internet, check the status of the machine and determine whether or not there would be a cold drink awaiting them, should they decide to make the trip down to the machine.
Dr. John Barrett explains the Internet of Things in his TED talk:
See also: ubiquitous computing, Internet of Things security (IoT security)

Join the conversation
13 comments
Even if we limit it to Information Technology there are far better examples. From Blackberry and smartphones in general to medical devices and assistive technologies.
Immediate destruction Internet of Things is coming
Not much accuracy is needed for a EMP attack, just a polar orbit and a small nuke exploded in space above the USA.
Clinton Gave China Chip Technology For Nuclear Warfare |by Charles R. Smith | September 30, 2003
http://www.tonyrogers.com/news/clinton_china_nukes.htm
Newly declassified documents show that President Bill Clinton personally approved the transfer to China of advanced space technology that can be used for nuclear combat.
Quite interesting the issue. However I am getting started with much difficulties due to machine/software language and usage thereof.
I would like to continue this conversation toward learning more and more thereabout.
Jose Ramirez Carbonel