Evaluate Weigh the pros and cons of technologies, products and projects you are considering.

How mobile operators can bring the smart city to life

Can you relate to this? You find that one elusive parking spot — and as you are backing up, another car sneaks in. A study conducted last month in the U.K. found that more than half of British drivers suffer from stress when they cannot find a parking space. Probably all drivers in major towns and cities everywhere could relate to parking stress. You would think that this modern day scourge could be addressed with IoT.

In theory, it should be simple. Smart parking sensors would be able to flag vacant parking spots to motorists on an application, such as Google Maps, Waze or Apple Maps, as they enter a town or city. Parking would be a breeze! Not so. As things stand, motorists are still far from finding a remedy for their parking headaches. The smart parking use case is a prime example of a problem holding back IoT’s full potential.

The rise of NB-IoT

The reason for this conundrum is two-fold — a lack of standards and a gap between efficiently connecting parking sensors with multiple cloud vendors and central application servers. Currently, NB-IoT, especially the non-IP data delivery, provides the cellular functionality required to efficiently connect devices across large distances with prolonged battery life. A number of mobile carriers, including Vodafone, Three, China Mobile and Zain, either have deployed NB-IoT networks or are conducting trials. According to analysts, the NB-IoT chipset market could grow from $16 million in 2017 to $181 million by 2022 at a compound annual growth rate of just over 60%. Yet, connecting non-IP devices, such as smart parking sensors, over NB-IoT to platforms, such as Azure, CloudPlatform or AWS, via central application servers is complex.

Currently, IoT gateways form the bridge between smart sensors or devices and internet connectivity via NB-IoT on a cellular network. 3GPP and the Service Capability Exposure Function (SCEF) set the standards to connect the device/sensor to the IoT gateway. Things start to get murky when you want the device/sensor to connect to multiple application servers and cloud platforms over NB-IoT gateways due to the absence of agreed standards and protocols. For example, a developer of a smart parking sensor would have to send its data to a central application server, transmit it via Amazon’s Cloud or to Microsoft Azure, and then to the likes of Waze, Google Maps and so on, which would pick up that data from multiple clouds. As the data from sensors is not federated and easily available, it is cumbersome and complex. This long-winded process is stifling innovation.

A bridge too far?

So, which players in the IoT ecosystem are best placed to find a solution for this? The organizations responsible for carrying the data on NB-IoT or, in other words, the mobile operators. Rather than just being the workhorse for transporting IoT data, mobile operators can play a central role by using gateways and building an open application ecosystem to foster interoperability between applications, devices and enterprise backend systems. Operators need to be the bridge into IoT systems such as AWS IoT and Azure IoT platforms. Importantly, operators also have the technology to secure the network and the IoT devices from attacks and malware, as well as provide network abstraction and enhanced connectivity.

To enable mobile operators to do this, gateways should have the capability to handle telco-grade distributed databases with the scale to manage millions, if not billions, of devices. Put simply, gateways should allow operators to consolidate the functionality required from standards and protocols such as SCEF/SCS and extend it to other API’s like REST-JSON, MQTT and federate data from multiple sources.

If, as Gartner predicts, there will be over 20 billion connected IoT devices by 2020, mobile operators could secure revenues of around $48 billion by capitalizing on the IoT/M2M opportunity. To do that, they need to grasp the initiative and foster innovation. Parking might sound trivial, but it is a use case nonetheless, within smart cities, that highlights a growing problem for application developers with NB-IoT connectivity — and an opportunity for mobile operators.

Smart cities are touted as the future of urban living where everything from waste bin collections to streetlights and transportation will be connected and intelligent. Of course, smart cities and IoT are still in their relative infancy and this provides an opportunity to iron out problems and fine-tune networks. We need to address the issues that are stifling innovation — namely the gap in efficient connectivity and a lack of standards. Mobile operators have the power to add the “smart” into cities and bring that bright future to life.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.